Optimal rates of convergence for persistence diagrams in Topological Data Analysis
نویسندگان
چکیده
Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.
منابع مشابه
Convergence rates for persistence diagram estimation in Topological Data Analysis
Computational topology has recently seen an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be natur...
متن کاملPersistence weighted Gaussian kernel for topological data analysis
Topological data analysis (TDA) is an emerging mathematical concept for characterizing shapes in complex data. In TDA, persistence diagrams are widely recognized as a useful descriptor of data, and can distinguish robust and noisy topological properties. This paper proposes a kernel method on persistence diagrams to develop a statistical framework in TDA. The proposed kernel satisfies the stabi...
متن کاملThe density of expected persistence diagrams and its kernel based estimation
Persistence diagrams play a fundamental role in Topological Data Analysis where they are used as topological descriptors of filtrations built on top of data. They consist in discrete multisets of points in the plane R2 that can equivalently be seen as discrete measures in R2. When the data come as a random point cloud, these discrete measures become random measures whose expectation is studied ...
متن کاملSliding Windows and Persistence: An Application of Topological Methods to Signal Analysis
We develop in this paper a theoretical framework for the topological study of time series data. Broadly speaking, we describe geometrical and topological properties of sliding window embeddings, as seen through the lens of persistent homology. In particular, we show that maximum persistence at the point-cloud level can be used to quantify periodicity at the signal level, prove structural and co...
متن کاملMeans and medians of sets of persistence diagrams
The persistence diagram is the fundamental object in topological data analysis. It inherits the stochastic variability of the data we use as input. As such we need to understand how to perform statistics on the space of persistence diagrams. This paper looks at the space of persistence diagrams under a variety of different metrics which are analogous to L metrics on the space of functions. Usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1305.6239 شماره
صفحات -
تاریخ انتشار 2013